Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes.
نویسندگان
چکیده
Somatic mutations in cancer are more frequent in heterochromatic and late-replicating regions of the genome. We report that regional disparities in mutation density are virtually abolished within transcriptionally silent genomic regions of cutaneous squamous cell carcinomas (cSCCs) arising in an XPC(-/-) background. XPC(-/-) cells lack global genome nucleotide excision repair (GG-NER), thus establishing differential access of DNA repair machinery within chromatin-rich regions of the genome as the primary cause for the regional disparity. Strikingly, we find that increasing levels of transcription reduce mutation prevalence on both strands of gene bodies embedded within H3K9me3-dense regions, and only to those levels observed in H3K9me3-sparse regions, also in an XPC-dependent manner. Therefore, transcription appears to reduce mutation prevalence specifically by relieving the constraints imposed by chromatin structure on DNA repair. We model this relationship among transcription, chromatin state, and DNA repair, revealing a new, personalized determinant of cancer risk.
منابع مشابه
The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation.
The repair of DNA damage in highly compact, transcriptionally silent heterochromatin requires that repair and chromatin packaging machineries be tightly coupled and regulated. KAP1 is a heterochromatin protein and co-repressor that binds to HP1 during gene silencing but is also robustly phosphorylated by Ataxia telangiectasia mutated (ATM) at serine 824 in response to DNA damage. The interplay ...
متن کاملNuclear topology modulates the mutational landscapes of cancer genomes
1000 VOLUME 24 NUMBER 11 NOVEMBER 2017 NAture StructurAL & moLecuLAr bIoLogY Emerging evidence indicates that somatic mutations in cancer genomes are nonrandomly distributed and are influenced by factors such as genomic context and DNA secondary structures, chromatin organization, transcriptional activity, and replication timing1–11. Local variation in the mutation burden stems from variability...
متن کاملDetection of Somatic Mutation in Exon 12 of DNA Polymerase β in Ovarian Cancer Tissue Samples
Background: DNA polymerase β (pol β) is a key enzyme of base excision repair pathway. It is a 1-kb gene consisting of 14 exons. Its catalytic part lies between exon 8 and exon 14. Exon 12 has a role in deoxyribonucleotide triphosphate selection for nucleotide transferase activity. Methods: Genomic DNA was isolated from ovarian carcinoma samples. Single strand conformation polymorphism...
متن کاملGenome-wide reorganization of histone H2AX toward particular fragile sites on cell activation
γH2AX formation by phosphorylation of the histone variant H2AX is the key process in the repair of DNA lesions including those arising at fragile sites under replication stress. Here we demonstrate that H2AX is dynamically reorganized to preoccupy γH2AX hotspots on increased replication stress by activated cell proliferation and that H2AX is enriched in aphidicolin-induced replisome stalling si...
متن کاملEndogenous DNA Damage as a Source of Genomic Instability in Cancer
Genome instability, defined as higher than normal rates of mutation, is a double-edged sword. As a source of genetic diversity and natural selection, mutations are beneficial for evolution. On the other hand, genomic instability can have catastrophic consequences for age-related diseases such as cancer. Mutations arise either from inactivation of DNA repair pathways or in a repair-competent bac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell reports
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2014